PHYSICAL REVIEW E, VOLUME 63, 066132

Competitive growth model involving random deposition and random deposition
with surface relaxation
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A deposition model that considers a mixture of random deposition with surface relaxation and a pure random
deposition is proposed and studied. As the system evolves, random deposition with surface relpuegion
random depositiontake place with probabilityp and (1-p), respectively. The discretémicroscopi¢ ap-
proach to the model is studied by means of extensive numerical simulations, while continuous equations are
used in order to investigate the mesoscopic properties of the model. A dynamic scaling ansatz for the interface
width W(L,t,p) as a function of the lattice sidg the timet andp is formulated and tested. Three exponents,
which can be linked to the standard growth exponent of random deposition with surface relaxation by means
of a scaling relation, are identified. In the continuous limit, the model can be well described by means of a
phenomenological stochastic growth equation withrdependent effective surface tension.
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[. INTRODUCTION more kinds of particles, an@) when considering deposition
of a single kind of particles that undergo either a deposition/
Over the last two decades there has been a consideral#@aporation process or are subjected to different growing
progress in the study of the morphology, structure, and othenechanisms. One example of cdaearises out of the depo-
physical and chemical properties of growing interfacessition of alloys or systems with impurities, see, e[¢5-20
[1-4]). This interest arises due to the technological applica@nd references therein. In this case, there may be different
tions of the subject and because evolving interfaces can dgteractions among different kinds of particles and the grow-
found in a great variety of physical, chemical, and biologicall"d mechanisms chandé5-20. For the example of depo-
systems and processes of scientific relevance. The growth §ftion of one kind of particlécase b, Pellegrini and Jullien
films either by vapor deposition, chemical deposition or 21’2_2] ha\{‘e _stud,|7ed a ?al_lls_tlc,rnodgl of surface growth that
molecular-beam epitaxy[1,5,6, bacterial growth [7], considers “sticky” and _slldmg particles. In a relateq con-
electrodeposition/dissolution experimef@$, propagation of text, very recently Shapat al. [8] have reported experimen-
. X : . tal results for the surface roughness during cyclical
reaction fronts in catalyzed reactiof#, propagation of for-

, e electrodeposition/dissolution of silver.
ﬁ]SttglirSejrlegl’ and diffusion front411] are relevant examples The aim of the present work is to study a competitive

o , . dynamic process involving two different growing mecha-
_ Models of growing m_terfaces may be deflned_ and St“d'echisms, namely, random depositiéRD) and random deposi-
either on a discrete lattice or by means of continuous equaion with surface relaxatiotRDSR. In order to describe the
tions [6]. Discrete models are defined by a set of rules thakcaling behavior of this model, a dynamic phenomenological
prOVide a detailed miCI‘OSCOpiC description of the eVOIUtionsca”ng approach that requires two independent exponentS,
of the surface. Within this context, the Family-Vicsek phe— has been devek)ped and tested by means of numerical simu-
nomenological scaling approa¢h?] has proved to be very |ations. Also, a phenomenological growth equation consis-
successful for the description of the dynamic evolution oftent with the scaling behavior observed numerically is pro-
growing interfaceg1—4). posed.
On the other hand, great progress has been achieved in the
understanding of interface behavior due to the introduction Il. DESCRIPTION OF THE MODEL AND THE
of continuous equations that are focused on macroscopic as- SIMULATION METHOD: DYNAMIC SCALING
pects of surface roughness that are expected to be universal
[13,14. A discrete growth model is studied, namely the
The study of growth models involving one kind of par- RDSR/RD model, where particles of a single kind are aggre-
ticle has received much attentipb—4]. However, less atten- gated either according to the rules of RDSR with probability
tion has been drawn to the study of the dynamics of comp or according to the rules of RD with probability {1p).
petitive processes, in spite of the fact that these processes aseimerical Monte Carlo simulations were performed in (1
significant to the growth of real materials in at least two+ 1) dimension using lattices of sideand taking periodic
different ways:(a) when the growing process involves two or boundary conditions in the direction perpendicular to the
growing surface.
In the RD growth model a column is randomly chosen
*FAX: 0054-221-4254642. along the width of the sample of lengthand a patrticle is
Email address: ealbano@inifta.unlp.edu.ar launched vertically until it reaches the top of the selected

1063-651X/2001/6()/0661326)/$20.00 63066132-1 ©2001 The American Physical Society



HOROWITZ, MONETTI, AND ALBANO PHYSICAL REVIEW E 63 066132

column, whereupon it is deposited. The RDSR is a variant of 10> —— T — T — T
the RD process: a patrticle is released from a random position (@) °°o°°p =0

above the surface and falls vertically until reaches the top of nepngese P=0-01
the selected column, as in the RD model. However, the de- i L=256 WOMM% p=0.02 ]
posited particle is allowed to relax to a nearest neighbor col- 21 3 o —0.04]
umn if the height of the neighboring column is lower than p=
the one corresponding to the selected column. = p=0.08

Simulations are performed using {11)-dimensional lat- p=0.16
tices of size 64L=<8192 and results are averaged over 10 -0.32
10°—10 different runs, depending dn A Monte Carlo time =
step(mcs involves the deposition df particles, so during a p=0.64
mcs each column grows one lattice uflit)) in average.

The interface of the aggregate is defined as the set of L
particles that are placed at the highest position of each col- 10° 10° 10"
umn. So, the mean height of the interfg¢gt)) at timet is
given by(h(t))=1/LS!_,h(i,t), whereh(i,t) is the height )
of the ith column at timet. Both, (h(t)) and h(i,t) are 10
measured in LU. In addition, the interface wid#(L,t),
which characterizes the roughness of the interface, is defined L=1024
as L=512

L=256
1L L=128
W(L,t)= \/E 21 [h(i,t)—(h(t))]2 (1) = 10' . L=64 ]
=

Considering a finite system and starting from a flat sub-
strate, the width of the interface first increases algebraically
according tow(t)«t?, where3>0 is the growth exponent
of the system. As the system evolves correlations develop | ;. . . . 1. 1. 1. 1. 4.
and eventually the correlation length reaches the size of the W0 100 10 10 10 10 10 10 10

system. At this long-time regime the interface width satu- t
rates at some constant vallg ;<L ¢, wheree is the rough-

ness exponent. This type of behavior is known as the thE:
Family-Vicsek scaling approadi?] that has proved to be
very successful for the description of the dynamic evolutio
of a growing interface, namely,

FIG. 1. Log-log plots ofV versust for the RDSR/RD modeka)

256 and different values gf, and(b) p=0.16 and lattices of
different size. In(b) the arrows show the location &f; andt,, for

Mthe data corresponding to=1024. Also in(b) the dashed line has
slopeBrpsr= 1/4, and have been drawn for the sake of comparison.
Distances are measured in LU atnid mcs. More details in the text.

acteristic of the RD process, given Bj/(t)e=tPro, with
Brp=1/2. Considering surface relaxatiop*0), the satu-
whereZ is the dynamic exponent. In additiof(u) is a suit-  ration of the interface width occurs. However, the saturation
able scaling function that behaves as followsf(u)= con-  valueW; sensitively depends om saturation takes place at
stant foru>1 or, in other words, the interface width satu- longer times for smaller values @f while the width of the
rates for long enough times atii) f(u)=u? for u<1. The interface is smaller for largep values. Therefore, the RD
former condition implies thatW(t)=t? holds during the process causes a twofold effect; on the one hand a delay in
short time regime. A scaling relationship can easily be dethe propagation of correlations is observed, and on the other
rived so thatZ=a/B and only two independent exponents hand the surface roughness increases.

remain. Figure Xb) shows plots ofW versust for lattices of dif-

For RD, W(t) does not saturate due the lack of lateralferent size but keeping=0.16 constant. Here, like in Fig.
correlations, soN(t)=tPro, is independent of. with Brp 1(a), three different regimes and the corresponding cross-
=3. In contrast, the RDSR process causes the developmeavers can easily be observed. For short times tsay,, the
of lateral correlations and, therefore, one I&g,sg=35 and  random growth of the interface is observte RD process
ORDSF= 5. dominates At this stage, correlations have not developed

yet and W(t)=tPro(t<t,,) holds. During an intermediate
IIl. RESULTS AND DISCUSSION time regimen, sayx1<t<t_xz, correlat?ons develop since the
RDSR process now dominates leading/i¢t) «<tProsr At a

Figure Xa) shows log-log plots ofV versust obtained for  later stage fot>t,,, correlations can no longer grow due to
the RDSR/RD model taking =256 and using different val- the geometrical constraint of the lattice size and saturation is
ues ofp. For p=0 the observed linear growth &Y is char-  observed.

t
W(L,t)ocL“f<F), 2
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FIG. 2. (a) Log-log plots ofW,,(L,p)/L*rpsrversusp obtained "'1'(')_2 —= 1(')_1 = 1'00
for lattices of different size, as indicated in the figure, and assuming p

arpsg= 1/2. The full line has slopé=0.97 and corresponds to the

best fit of the data(b) Log-log plots oft,,/L*Rosk versusp ob- FIG. 3. (@) Log-log plot of W versust for the RDSR/RD model

tained for lattices of different size, as indicated in the figure, andobtained forL =8192 and different values qf as indicated in the

assumingZgpsg=2. The full line has slopey=1.97 and corre- figure. (b) Log-log plot of the ordinate intersection{) obtained

sponds to the best fit of the data. Distances are measured in LU aftbm Fig. 3a) versusp. The straight line with slope/=0.51 cor-

time in mcs. More details in the text. responds to the best fit of the data. Distances are measured in LU
and time in mcs.

Based on the data shown in Fig. 1, a phenomenological
dynamic scaling approach can be proposed. Accordingly, the
following ansatz for the saturation value of the interface
width [W¢(L,p)] and the characteristic crossover time is
proposed

W(t,p)etFPROSRD™Y, (1 <t<ty,), (5)
where v is a characteristic exponent. In order to calculate
this exponent, first, it is convenient to evaluate the ordinate
intersectionl 5(p) for different values ofp [see Fig. 8)].
Subsequently, a plot dfy(p) versusp [as shown in Fig.
3(b)] yields the valuey=0.51+0.05.

Based on all numerical results supporting E, (4),
and (5), the following phenomenological dynamic scaling
ansatz for the RDSR/RD model can be formulated

W(L,p)cL“RoSRp™2  (p>0), )

and

tyo(L,p)cL?ROSRD ™Y (p>0). 4
In order to check the assumptions made in E§sand(4),
log-log plots of bothWg(L,p)/L“RDSR versusp [Fig. 2(a)]
and t,,/L%rosr versusp [Fig. 2(b)], have been performed.
Using the exact valuerpsg= 3, Straight lines are observed,
in agreement with Eq(3), and the best fit give$=0.97
+0.04 for the slope in Fig.(2). Also, the assumption of Eq.
(4) is validated by the results shown in Figh2and the best F(u)=const foru>1, so Eq.(3) for the saturation of the

fit of the data yields/=1.97+0.05. interface width is recovered, an@i) F(u)=ufrosr for u

Results of extensive simulation performed using larger.y 1 should be noticed that using the proposed ansatz, Eq.
Iqttlces q':_8192) and dnffergnt values gf are shown in (5) can be recovered if the following scaling relationship
Fig. 3@. It is worth mentioning that the log-log plot ai/ among exponents holds

versust shows that théparalle) straight lines corresponding

to the intermediate time regime are equally spaced and have YBrosg— 6+ v=0, (7)
slopesBrpsi= 3 (for t>t,,). The values op corresponding

to successive curves in Fig(e differ in a factor of 2. Then, where the identity¥ rpsg= @rpsr/ Brosrhas been used. The
the response of the system clearly suggests a power-law beelationship given by Eq.7) can be checked taking the exact
havior of the form, value Brpsg=3 and our estimations of, § and y. Using

t
LZRDSRp—V)'
L— oo, (6)

W(t,L,p)o«L“RDSRpﬁF(

p>0, t>t,,

whereF(u) is a suitable scaling function which satisfi€s:
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FIG. 4. Log-log plot of W(L,t,p)/L*RosRp~? versus

t/L%rosRp~Y obtained for different values qf(0.01<p=0.64) and
lattices of sizel =256 andL =128, as indicated in the figure. Dis-
tances are measured in LU and time in mcs.

these figuresyBrpr— 6+ y=0.03£0.06 is obtained, sup-
porting the validity of Eq.(7). So, the following rational
values of the exponents can be conjectured:

y=2 (1.97+0.05; &=1 (0.97+0.04;

5 (051+0.09,

)

where the values in brackets are our numerical estimation. Of
course, Eq(7) implies that only two of the exponents are

independent.
The conjectured phenomenological scaling ang&q.
(6)], can be easily tested by plotting/(L,t,p)/L*rRosRp~ ¢

versust/L%rosRp Y in a log-log scale, as shown in Fig. 4. As

10°
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expected, deviations from data collapsing are observed out- FIG. 5. (a) Log-log plots of C(128t) versust obtained for dif-

side the range of validity of our ansatz, i.e., fert,;. Oth-

ferent values ob, as indicated in the figure. The dashed-lines have

erwise, data collapsing is quite satisfactory pointing out thaslope 1/2 according to Eq13). The inset shows a log-log plot of

the proposed ansatz holds, at least as a first approach.

IV. PHENOMENOLOGICAL STOCHASTIC
GROWTH EQUATION

the ordinate intersectior §) obtained from Fig. &) versusp. The
straight line with slope-0.97 corresponds to the best fit of the data.
(b) Log-log plots ofC(r,t) versusr att~t,, obtained for different
values ofp, as indicated in the figure. The dashed-lines have slope

1 according to Eq(14). The inset shows a log-log plot of the

In contrast to the microscopic details of the growingordinate intersectionlg) obtained from Fig. &) versusp. The
mechanisms of the interface, continuous equations focus ostraight line with slope-1.96 corresponds to the best fit of the data.
the macroscopic aspects of the roughness. Essentially, thistances are measured in LU and time in mcs. More details in the
aim is to follow the evolution of the coarse-grained heighttext.
function h(x,t) using a well-established phenomenological .
approach that take into account all the relevant processes thdy the local properties of the surface. Ald®,denotes the
survive at a coarse-grained level. This procedure normallyn€an deposition rate ang(x,t) is the deposition noise that

leads to stochastic nonlinear partial differential equationgleétermines the fluctuations of the incoming flux around its
that may be written as followfl,6,13,14 mean valué-. It is usually assumed that the noise is spatially

and temporally uncorrelated, so fluctuations are given by a
Gaussian white noise.

In order to formulate a continuous description of the
RDSR/RD competitive process we propose the following
where the index symbolically denotes different processes, generalized Edwards-Wilkinson stochastic growth equation
Gi{h(x,t)} is a local functional that contains the various sur-
face relaxation phenomena and only depends on the spatial
derivatives ofh(x,t) since the growth process is determined

Jh(x,t)
ot

=Gi{h(x,t)} + F+ n(x,t), 9

dh(x,t)

e F+v(p)V?h(x,t)+ 5(x,1),

(10
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where now the surface tension is assumed to depenqd lon  time dependence in E¢l3), i.e., an exponent 1/2, as indi-
spite of the fact that such dependence is not known expliceated by the straight-dashed lines, is obtained for a wide
itly, it is expected thaw(p) should be a suitable crossover range ofp values. Also, the ordinate intersectidng(p) | of
function such thai(p=0)=0, so the RD model is obtained these straight lines behave as<p~! [see the inset of Fig.
while »(p=1)=v,, so the RDSR model is recovered. Equa-5(a)] in agreement with Eq(13). On the other hand, Fig.
tion (10) can also be solved exactly in Fourier space using &(b) shows that log-log plots o€(r,t,,) versusr also ex-
standard proceduresee, e.g.[1,23]) and after some algebra hibit the power-law dependence predicted by Bgf). Fur-
[23], the following relationships can be established thermore, in this caséy(p) also behaves according to Eq.
(14), as shown in the inset of Fig5). Summing up, we
WZ(L,t)ociL, t—oo and largd., (11) conclude that t_he numerical data corresponding to the height—
v(p) height correlation function are in excellent agreement with
the predictions of Eq(13) and(14), supporting the validity
and of the proposed phenomenological continuous equation for

WAL )otY2u(p) VA, Lo and largd. (12) the RDSR/RD proced€q. (10)].

Comparing Egs(3) and(5) with Egs.(11) and(12), respec- V. CONCLUSIONS
tively, it follows that they are consistent provided thgp)
=v,p2. A competitive growth model, called the RDSR/RD

The height-height correlation function can be used tomodel, that involves a mixing of random depositioith
show another argument for the validity of E€L0). This  Probability 1—p) and random deposition with surface relax-
function is given byC(r,t)=((h(r,t)—h(r’,t'))?), and de-  ation (with probability p) is introduced and studied. The
scribes the self-affine fluctuations of the surface height. ~ Family and Vicsek's dynamic scaling ansi2] is general-

Solving Eq.(10) exactly in the Fourier space, we found ized and the growing interface resulting from the competitive
that for L—o the short- and long-time behavior of the RDSR/RD process are rationalized by means of a phenom-
height-height correlation function can be written as enological dynamical scaling approach that considers three

exponents, where only two of them are independent. The
D ., proposed ansatz allows us to establish a scaling relation
C(r’t)“at =0, (13 among the exponents and the well-known growth exponent
of the Edwards-Wilkinson’s model.
and A phenomenological continuous equation for the
RDSR/RD model is proposed and solved exactly. Comparing
the analytical solutions with numerical data it is concluded

D
C(r,H= Er’ t—eo, (14 that the effective surface tension depends quadratically. on
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