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Competitive growth model involving random deposition and random deposition
with surface relaxation

Claudio M. Horowitz, Roberto A. Monetti, and Ezequiel V. Albano*
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A deposition model that considers a mixture of random deposition with surface relaxation and a pure random
deposition is proposed and studied. As the system evolves, random deposition with surface relaxation~pure
random deposition! take place with probabilityp and (12p), respectively. The discrete~microscopic! ap-
proach to the model is studied by means of extensive numerical simulations, while continuous equations are
used in order to investigate the mesoscopic properties of the model. A dynamic scaling ansatz for the interface
width W(L,t,p) as a function of the lattice sideL, the timet andp is formulated and tested. Three exponents,
which can be linked to the standard growth exponent of random deposition with surface relaxation by means
of a scaling relation, are identified. In the continuous limit, the model can be well described by means of a
phenomenological stochastic growth equation with ap-dependent effective surface tension.
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I. INTRODUCTION

Over the last two decades there has been a conside
progress in the study of the morphology, structure, and o
physical and chemical properties of growing interfac
@1–4#!. This interest arises due to the technological appli
tions of the subject and because evolving interfaces can
found in a great variety of physical, chemical, and biologi
systems and processes of scientific relevance. The grow
films either by vapor deposition, chemical deposition
molecular-beam epitaxy@1,5,6#, bacterial growth @7#,
electrodeposition/dissolution experiments@8#, propagation of
reaction fronts in catalyzed reactions@9#, propagation of for-
est fires@10#, and diffusion fronts@11# are relevant example
in this area.

Models of growing interfaces may be defined and stud
either on a discrete lattice or by means of continuous eq
tions @6#. Discrete models are defined by a set of rules t
provide a detailed microscopic description of the evolut
of the surface. Within this context, the Family-Vicsek ph
nomenological scaling approach@12# has proved to be very
successful for the description of the dynamic evolution
growing interfaces@1–4#.

On the other hand, great progress has been achieved i
understanding of interface behavior due to the introduct
of continuous equations that are focused on macroscopic
pects of surface roughness that are expected to be univ
@13,14#.

The study of growth models involving one kind of pa
ticle has received much attention@1–4#. However, less atten
tion has been drawn to the study of the dynamics of co
petitive processes, in spite of the fact that these processe
significant to the growth of real materials in at least tw
different ways:~a! when the growing process involves two
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more kinds of particles, and~b! when considering deposition
of a single kind of particles that undergo either a depositi
evaporation process or are subjected to different grow
mechanisms. One example of case~a! arises out of the depo
sition of alloys or systems with impurities, see, e.g.,@15–20#
and references therein. In this case, there may be diffe
interactions among different kinds of particles and the gro
ing mechanisms change@15–20#. For the example of depo
sition of one kind of particle~case b!, Pellegrini and Jullien
@21,22# have studied a ballistic model of surface growth th
considers ‘‘sticky’’ and ‘‘sliding’’ particles. In a related con
text, very recently Shapiret al. @8# have reported experimen
tal results for the surface roughness during cycli
electrodeposition/dissolution of silver.

The aim of the present work is to study a competiti
dynamic process involving two different growing mech
nisms, namely, random deposition~RD! and random deposi
tion with surface relaxation~RDSR!. In order to describe the
scaling behavior of this model, a dynamic phenomenolog
scaling approach that requires two independent expone
has been developed and tested by means of numerical s
lations. Also, a phenomenological growth equation cons
tent with the scaling behavior observed numerically is p
posed.

II. DESCRIPTION OF THE MODEL AND THE
SIMULATION METHOD: DYNAMIC SCALING

A discrete growth model is studied, namely th
RDSR/RD model, where particles of a single kind are agg
gated either according to the rules of RDSR with probabi
p or according to the rules of RD with probability (12p).
Numerical Monte Carlo simulations were performed in
11) dimension using lattices of sideL and taking periodic
boundary conditions in the direction perpendicular to t
growing surface.

In the RD growth model a column is randomly chos
along the width of the sample of lengthL and a particle is
launched vertically until it reaches the top of the selec
©2001 The American Physical Society32-1
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column, whereupon it is deposited. The RDSR is a varian
the RD process: a particle is released from a random pos
above the surface and falls vertically until reaches the top
the selected column, as in the RD model. However, the
posited particle is allowed to relax to a nearest neighbor
umn if the height of the neighboring column is lower th
the one corresponding to the selected column.

Simulations are performed using (111)-dimensional lat-
tices of size 64<L<8192 and results are averaged ov
102–103 different runs, depending onL. A Monte Carlo time
step~mcs! involves the deposition ofL particles, so during a
mcs each column grows one lattice unit~LU! in average.

The interface of the aggregate is defined as the se
particles that are placed at the highest position of each
umn. So, the mean height of the interface^h(t)& at time t is
given by ^h(t)&[1/L( i 51

L h( i ,t), whereh( i ,t) is the height
of the i th column at timet. Both, ^h(t)& and h( i ,t) are
measured in LU. In addition, the interface widthW(L,t),
which characterizes the roughness of the interface, is defi
as

W~L,t ![A1

L (
i 51

L

@h~ i ,t !2^h~ t !&#2. ~1!

Considering a finite system and starting from a flat s
strate, the width of the interface first increases algebraic
according toW(t)}tb, whereb.0 is the growth exponen
of the system. As the system evolves correlations deve
and eventually the correlation length reaches the size of
system. At this long-time regime the interface width sa
rates at some constant valueWsat}La, wherea is the rough-
ness exponent. This type of behavior is known as the
Family-Vicsek scaling approach@12# that has proved to be
very successful for the description of the dynamic evolut
of a growing interface, namely,

W~L,t !}La f S t

LZD , ~2!

whereZ is the dynamic exponent. In addition,f (u) is a suit-
able scaling function that behaves as follows:~i! f (u)5 con-
stant foru@1 or, in other words, the interface width sat
rates for long enough times and~ii ! f (u)}ub for u!1. The
former condition implies thatW(t)}tb holds during the
short time regime. A scaling relationship can easily be
rived so thatZ5a/b and only two independent exponen
remain.

For RD, W(t) does not saturate due the lack of late
correlations, soW(t)}tbRD, is independent ofL with bRD
5 1

2 . In contrast, the RDSR process causes the developm
of lateral correlations and, therefore, one hasbRDSR5

1
4 and

aRDSR5
1
2 .

III. RESULTS AND DISCUSSION

Figure 1~a! shows log-log plots ofW versust obtained for
the RDSR/RD model takingL5256 and using different val
ues ofp. For p50 the observed linear growth ofW is char-
06613
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acteristic of the RD process, given byW(t)}tbRD, with
bRD51/2. Considering surface relaxation (p.0), the satu-
ration of the interface width occurs. However, the saturat
valueWs sensitively depends onp: saturation takes place a
longer times for smaller values ofp, while the width of the
interface is smaller for largerp values. Therefore, the RD
process causes a twofold effect; on the one hand a dela
the propagation of correlations is observed, and on the o
hand the surface roughness increases.

Figure 1~b! shows plots ofW versust for lattices of dif-
ferent size but keepingp50.16 constant. Here, like in Fig
1~a!, three different regimes and the corresponding cro
overs can easily be observed. For short times, sayt,tx1, the
random growth of the interface is observed~the RD process
dominates!. At this stage, correlations have not develop
yet and W(t)}tbRD(t,tx1) holds. During an intermediate
time regimen, saytx1,t,tx2, correlations develop since th
RDSR process now dominates leading toW(t)}tbRDSR. At a
later stage fort.tx2, correlations can no longer grow due
the geometrical constraint of the lattice size and saturatio
observed.

FIG. 1. Log-log plots ofW versust for the RDSR/RD model:~a!
L5256 and different values ofp, and ~b! p50.16 and lattices of
different size. In~b! the arrows show the location oftx1 andtx2 for
the data corresponding toL51024. Also in~b! the dashed line has
slopebRDSR51/4, and have been drawn for the sake of comparis
Distances are measured in LU andt in mcs. More details in the text
2-2
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Based on the data shown in Fig. 1, a phenomenolog
dynamic scaling approach can be proposed. Accordingly,
following ansatz for the saturation value of the interfa
width @Ws(L,p)# and the characteristic crossover timetx2 is
proposed

Ws~L,p!}LaRDSRp2d ~p.0!, ~3!

and

tx2~L,p!}LZRDSRp2y ~p.0!. ~4!

In order to check the assumptions made in Eqs.~3! and ~4!,
log-log plots of bothWs(L,p)/LaRDSR versusp @Fig. 2~a!#
and tx2 /LZRDSR versusp @Fig. 2~b!#, have been performed
Using the exact valueaRDSR5

1
2 , straight lines are observed

in agreement with Eq.~3!, and the best fit givesd>0.97
60.04 for the slope in Fig. 2~a!. Also, the assumption of Eq
~4! is validated by the results shown in Fig. 2~b! and the best
fit of the data yieldsy>1.9760.05.

Results of extensive simulation performed using lar
lattices (L58192) and different values ofp are shown in
Fig. 3~a!. It is worth mentioning that the log-log plot ofW
versust shows that the~parallel! straight lines correspondin
to the intermediate time regime are equally spaced and h
slopesbRDSR5

1
4 ~for t.tx1). The values ofp corresponding

to successive curves in Fig. 3~a! differ in a factor of 2. Then,
the response of the system clearly suggests a power-law
havior of the form,

FIG. 2. ~a! Log-log plots ofWsat(L,p)/LaRDSRversusp obtained
for lattices of different size, as indicated in the figure, and assum
aRDSR51/2. The full line has sloped50.97 and corresponds to th
best fit of the data.~b! Log-log plots of tx2 /LZRDSR versusp ob-
tained for lattices of different size, as indicated in the figure, a
assumingZRDSR52. The full line has slopey51.97 and corre-
sponds to the best fit of the data. Distances are measured in LU
time in mcs. More details in the text.
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W~ t,p!}tbRDSRp2g, ~ tx1,t,tx2!, ~5!

where g is a characteristic exponent. In order to calcula
this exponent, first, it is convenient to evaluate the ordin
intersectionI O(p) for different values ofp @see Fig. 3~a!#.
Subsequently, a plot ofI O(p) versusp @as shown in Fig.
3~b!# yields the valueg50.5160.05.

Based on all numerical results supporting Eqs.~3!, ~4!,
and ~5!, the following phenomenological dynamic scalin
ansatz for the RDSR/RD model can be formulated

W~ t,L,p!}LaRDSRp2dFS t

LZRDSRp2yD ,

p.0, t.tx1 , L→`, ~6!

whereF(u) is a suitable scaling function which satisfies:~i!
F(u)5const foru@1, so Eq.~3! for the saturation of the
interface width is recovered, and~ii ! F(u)5ubRDSR for u
!1. It should be noticed that using the proposed ansatz,
~5! can be recovered if the following scaling relationsh
among exponents holds

ybRDSR2d1g50, ~7!

where the identityZRDSR5aRDSR/bRDSRhas been used. Th
relationship given by Eq.~7! can be checked taking the exa
value bRDSR5

1
4 and our estimations ofy, d and g. Using

g

d

nd

FIG. 3. ~a! Log-log plot of W versust for the RDSR/RD model
obtained forL58192 and different values ofp as indicated in the
figure. ~b! Log-log plot of the ordinate intersection (I O) obtained
from Fig. 3~a! versusp. The straight line with slopeg50.51 cor-
responds to the best fit of the data. Distances are measured in
and time in mcs.
2-3
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these figuresybRDR2d1g50.0360.06 is obtained, sup
porting the validity of Eq.~7!. So, the following rational
values of the exponents can be conjectured:

y[2 ~1.9760.05!; d[1 ~0.9760.04!;

g[
1

2
~0.5160.05!, ~8!

where the values in brackets are our numerical estimation
course, Eq.~7! implies that only two of the exponents a
independent.

The conjectured phenomenological scaling ansatz@Eq.
~6!#, can be easily tested by plottingW(L,t,p)/LaRDSRp2d

versust/LZRDSRp2y in a log-log scale, as shown in Fig. 4. A
expected, deviations from data collapsing are observed
side the range of validity of our ansatz, i.e., fort,tx1. Oth-
erwise, data collapsing is quite satisfactory pointing out t
the proposed ansatz holds, at least as a first approach.

IV. PHENOMENOLOGICAL STOCHASTIC
GROWTH EQUATION

In contrast to the microscopic details of the growi
mechanisms of the interface, continuous equations focu
the macroscopic aspects of the roughness. Essentially
aim is to follow the evolution of the coarse-grained heig
function h(x,t) using a well-established phenomenologic
approach that take into account all the relevant processes
survive at a coarse-grained level. This procedure norm
leads to stochastic nonlinear partial differential equatio
that may be written as follows@1,6,13,14#

]h~x,t !

]t
5Gi$h~x,t !%1F1h~x,t !, ~9!

where the indexi symbolically denotes different processe
Gi$h(x,t)% is a local functional that contains the various su
face relaxation phenomena and only depends on the sp
derivatives ofh(x,t) since the growth process is determin

FIG. 4. Log-log plot of W(L,t,p)/LaRDSRp2d versus
t/LZRDSRp2y obtained for different values ofp(0.01<p<0.64) and
lattices of sizeL5256 andL5128, as indicated in the figure. Dis
tances are measured in LU and time in mcs.
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by the local properties of the surface. Also,F denotes the
mean deposition rate andh(x,t) is the deposition noise tha
determines the fluctuations of the incoming flux around
mean valueF. It is usually assumed that the noise is spatia
and temporally uncorrelated, so fluctuations are given b
Gaussian white noise.

In order to formulate a continuous description of t
RDSR/RD competitive process we propose the followi
generalized Edwards-Wilkinson stochastic growth equati

]h~x,t !

]t
5F1n~p!¹2h~x,t !1h~x,t !, ~10!

FIG. 5. ~a! Log-log plots ofC(128,t) versust obtained for dif-
ferent values ofp, as indicated in the figure. The dashed-lines ha
slope 1/2 according to Eq.~13!. The inset shows a log-log plot o
the ordinate intersection (I O) obtained from Fig. 5~a! versusp. The
straight line with slope20.97 corresponds to the best fit of the da
~b! Log-log plots ofC(r ,t) versusr at t'tx2 obtained for different
values ofp, as indicated in the figure. The dashed-lines have sl
1 according to Eq.~14!. The inset shows a log-log plot of th
ordinate intersection (I O) obtained from Fig. 5~b! versusp. The
straight line with slope21.96 corresponds to the best fit of the da
Distances are measured in LU and time in mcs. More details in
text.
2-4
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where now the surface tension is assumed to depend onp. In
spite of the fact that such dependence is not known exp
itly, it is expected thatn(p) should be a suitable crossov
function such thatn(p50)50, so the RD model is obtaine
while n(p51)5no , so the RDSR model is recovered. Equ
tion ~10! can also be solved exactly in Fourier space usin
standard procedure~see, e.g.,@1,23#! and after some algebr
@23#, the following relationships can be established

W2~L,t !}
D

n~p!
L, t→` and largeL, ~11!

and

W2~L,t !}t1/2n~p!21/2L, L→` and larget. ~12!

Comparing Eqs.~3! and~5! with Eqs.~11! and~12!, respec-
tively, it follows that they are consistent provided thatn(p)
5nop2.

The height-height correlation function can be used
show another argument for the validity of Eq.~10!. This
function is given byC(r ,t)[^(h(r ,t)2h(r 8,t8))2&, and de-
scribes the self-affine fluctuations of the surface height.

Solving Eq.~10! exactly in the Fourier space, we foun
that for L→` the short- and long-time behavior of th
height-height correlation function can be written as

C~r ,t !}
D

p
t1/2, t→0, ~13!

and

C~r ,t !}
D

p2
r , t→`, ~14!

respectively.
In order to check these findings, the height-height cor

lation function has been evaluated numerically and the
tained results are shown in Fig.~5!. Figure 5~a! shows that
log-log plots ofC(r 5128,t) versust are consistent with the
n-

.

al-
ra

A
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time dependence in Eq.~13!, i.e., an exponent 1/2, as ind
cated by the straight-dashed lines, is obtained for a w
range ofp values. Also, the ordinate intersections@ I O(p)# of
these straight lines behave asI O}p21 @see the inset of Fig.
5~a!# in agreement with Eq.~13!. On the other hand, Fig
5~b! shows that log-log plots ofC(r ,tx2) versusr also ex-
hibit the power-law dependence predicted by Eq.~14!. Fur-
thermore, in this caseI O(p) also behaves according to Eq
~14!, as shown in the inset of Fig.~5!. Summing up, we
conclude that the numerical data corresponding to the hei
height correlation function are in excellent agreement w
the predictions of Eq.~13! and ~14!, supporting the validity
of the proposed phenomenological continuous equation
the RDSR/RD process@Eq. ~10!#.

V. CONCLUSIONS

A competitive growth model, called the RDSR/R
model, that involves a mixing of random deposition~with
probability 12p) and random deposition with surface rela
ation ~with probability p) is introduced and studied. Th
Family and Vicsek’s dynamic scaling ansatz@12# is general-
ized and the growing interface resulting from the competit
RDSR/RD process are rationalized by means of a phen
enological dynamical scaling approach that considers th
exponents, where only two of them are independent. T
proposed ansatz allows us to establish a scaling rela
among the exponents and the well-known growth expon
of the Edwards-Wilkinson’s model.

A phenomenological continuous equation for t
RDSR/RD model is proposed and solved exactly. Compar
the analytical solutions with numerical data it is conclud
that the effective surface tension depends quadratically op.

ACKNOWLEDGMENTS

This work was financially supported by CONICET
UNLP, CIC ~Bs. As.!, ANPCyT and Fundacio´n Antorchas
~Argentina! and the Volkswagen Foundation~Germany!.
ev.

tter

er.

ns.
@1# A. L. Barabasi and H. E. Stanley, inFractal Concepts in Sur-
face Growth ~Cambridge University Press, Cambridge, E
gland, 1995!.

@2# Kinetic of Aggregation and Gelation, edited by F. Family and
D. Landau~North-Holland, Amsterdam, 1984!.

@3# Fractals and Disordered Systems, edited by A. Bunde and S
Havlin ~Springer-Verlag, Berlin, 1992!, p. 229.

@4# F. Family, inRough Surfaces: Scaling Theory and Univers
ity, edited by R. Jullien, L. Peliti, R. Rammal, and N. Bocca
Springer Proceedings in Physics Vol. 32~Springer-Verlag,
Berlin, 1988!, p. 193.

@5# E.V. Albano, R.C. Salvarezza, L. Va´zquez, and A.J. Arvia,
Phys. Rev. B59, 7354~1999!.

@6# M. Kardar, Physica A281, 295 ~2000!.
@7# E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen,
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